Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Weight Reduction of Shifter Forks using Steel Inserts

2013-09-24
2013-01-2444
Shift quality of a manual transmission is a critical characteristic that is requires utmost care by the designers while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shift fork design, shifter design, gear design, transmission oil selection etc. Designers have realized that shift fork is critical element for improving shift feel of a transmission. This paper focuses upon the reduction in weight of the overall transmission shift system by using steel inserts in aluminum shifter forks. No compromise on the stiffness and strength of the shift fork of a manual transmission is done. Stiffness and strength of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A 5-speed manual transmission is used as an example to illustrate the same.
Technical Paper

Weight Optimized Design of a Front Suspension Component for Commercial Heavy Trucks

2004-10-26
2004-01-2709
Design of suspension systems for Heavy Trucks is always challenging due to the heavy loads the system is exposed to and the long life requirements for the total system. Historical solutions were over designed structures to get the needed life and reliability. This always meant heavier parts. In today's economy, the vehicle weight of commercial heavy trucks is a very important feature for our customers and the end user. Lighter, well-designed suspension components provide better ride quality to the drivers through lower un-sprung weight, lower initial costs and greater payloads. The latest available structural optimization techniques are a business requirement for tomorrow's products. This paper describes the developed methodology used by DANA Engineers to design a weight optimized upper control arm for Commercial Heavy Trucks in step by step fashion. The method starts with determining the loads on the component part.
Technical Paper

Weight Optimization of Off Highway Equipment Assembly

2011-10-06
2011-28-0096
Weight reduction in construction equipment is sought to achieve energy conservation and also to comply with the vehicle safety and compliance regulations, managing the weight distribution across the rear and the front end of the equipment to achieve the optimum balancing. Of late the thrust on product weight has increased along with reduced time to market, leading to increased usage of structural optimization methods. This has been further supported by the availability of high performance computing at relatively low cost. VOC and CTQ tools provided the motivation and initial screening of the design variables. The structural optimization software provides an integrated platform for analysis as well as optimization of components. In this work, an optimization tool has been used for size and shape optimization of a construction equipment assembly and a commercial FEA package was used for verification and validation of the results.
Technical Paper

Weed Recognition Using Machine Vision and Color Texture Analysis

1996-08-01
961759
The environmental impact from herbicide utilization has been well documented in recent years. The reduction in weed control with out a viable alternative will likely result in decreased per acre production and thus higher unit production cost. The potential for selective herbicide application to reduce herbicide usage and yet maintain adequate weed control has generated significant interest in different forms of remote sensing of agricultural crops. This research evaluated the color co-occurrence texture analysis technique to determine its potential for utilization in crop groundcover identification. A program termed GCVIS (Ground Cover VISion) was developed to control an ATT TARGA 24 frame grabber; and generate HSI color features from the RGB format pixel data, HSI CCM matrices and the co-occurrence texture feature data.
Technical Paper

Wear of Bearing Materials

1994-04-01
941111
Wear characteristics of four bearing materials have been investigated under different sliding conditions. The bearing materials used were CDA 954, CDA 863, CDA 932, and CDA 938. Using a Taber Wear Tester, a cylinder on a flat geometry was used as a tribo contact pair. All bearing materials in the form of a thick cylindrical disk were subjected to combined sliding-rolling motion against a rotating flat disk. The flat disk was either an abrasive disk, or a very soft steel disk, or a hardened steel disk with and without lubrication. Wear was measured as weight loss after several thousand cycles of rotation. Maximum wear of the bearing materials occurred when the counter body was a very soft steel disk. These results together with the wear rate of each bearing material sliding against four different counter bodies are presented. These results are found to be of practical importance in the design and application of journal bearings made of materials used in this investigation.
Technical Paper

Wear Trends of Axial Piston Type Pumps Operating in Severe Environments

1989-09-01
891868
Axial piston type pumps are often exposed to severe operating conditions because of the duty cycle, the environment, or, in some situations, poor maintenance and even abuse. The detrimental effects on the pump and the hydraulic system as a result of these adverse conditions are often not known or predictable. In this study, four controlled severe operating conditions were imposed on four identical axial piston type pumps. They included 1) constant high load pressure and normal fluid temperature, 2) constant high load pressure and elevated fluid temperature, 3) cyclic load pressure and normal fluid temperature, and 4) cyclic load pressure and elevated fluid temperature. The tests were long-term; they were run continuously for up to 5000 hours. The pump wear was monitored in all cases using ferrography. In addition, the condition of the fluid was monitored and the circuit filters were examined periodically. The results of the findings are presented in this paper.
Technical Paper

Wear Study of Coated Heavy Duty Exhaust Valve Systems in a Experimental Test Rig

2012-04-16
2012-01-0546
The exhaust valve system of combustion engines experiences a very complex contact situation of frequent impact involving micro sliding, high and varying temperatures, complex exhaust gas chemistry and possible particulates. The wear rate has to be extremely low, and the individual wearing events operate at a scale that is very demanding to detect. The tribological conditions in the exhaust valve system are expected to become even worse for engines that will follow the future emission regulations. The regulations demand reduced amounts of soot and particles, sulfur compounds, etc., which today act beneficial for the seating surfaces. The reductions are expected to increase the metal-to-metal contact.
Technical Paper

Wear Generation in Hydraulic Pumps

1990-09-01
901679
This paper is concerned with the synergistic effects of pump wear modes. The objective is to investigate the wear produced by cavitation, adhesion, abrasion, and corrosion and to verify a proposed model of the synergistic pump wear process. The approach followed includes identification of the combined effects of different wear modes (synergisms) in a pump and the development of a synergistic wear model that includes pump operating and environmental conditions as trigger factors of wear modes. An experimental program was designed to evaluate the cavitation, adhesion, and corrosion wear effects in conjunction with the abrasive wear produced in a pump by measuring wear debris, particle size and gravimetric levels of fluid. The generation of wear was traced to different pump locations. The results obtained here suggest that improved pump design and longer pump service life can be obtained when synergisms between failure modes are properly understood.
Technical Paper

Water-Glycol Hydraulic Fluid Performance Monitoring: Fluid Performance and Analysis Strategy

1995-09-01
952155
Hydraulic fluid performance, including water-glycols (W/G), is dependent on the chemical composition of the fluid and cleanliness. An overview of W/G fluid chemistry on pump wear is provided here. Also provided, is a brief overview of the impact of fluid cleanliness on the potential wear properties of various components. Finally, an overview of recommended analytical procedures to assure adequate long-term fluid hydraulic and lubrication performance is provided. If these procedures are followed, substantial improvements in hydraulic pump longevity and performance will be realized.
Technical Paper

Water-Glycol Hydraulic Fluid Evaluation by ASTM D 2882: Significant Contributors to Erroneous Results

1996-08-01
961740
One of the most commonly used tests to evaluate the antiwear properties of a hydraulic fluid is ASTM D 2882 which is based on a Vicker's V-104 vane pump. Although this is a commonly used test, the results are subject to numerous potential problems in both testing procedure and pump hardware. In this paper, the particular focus will be placed on potential problems that may be encountered with testing of water-glycol hydraulic fluids which may lead to erroneous and non-reproducible results.
Standard

WHEELS/RIMS—TRUCKS—TEST PROCEDURES AND PERFORMANCE REQUIREMENTS

1973-09-01
HISTORICAL
J267A_197309
This SAE Recommended. Practice provides uniform laboratory procedures for fatigue testing certain production disc wheels, spoke wheels, and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose passenger vehicles. Standardized fatigue tests are yet to be developed for wheels/rims not covered in this recommended practice.
Standard

WHEELS/RIMS—TRUCKS—TEST PROCEDURES AND PERFORMANCE REQUIREMENTS

1991-01-01
HISTORICAL
J267_199101
This SAE Recommended Practice provides uniform laboratory procedures for fatigue testing certain production disc wheels, and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose passenger vehicles. This document does not cover bolt together divided wheels or other special application wheels and rims.
Standard

WHEELS/RIMS - TRUCKS - TEST PROCEDURES AND PERFORMANCE REQUIREMENTS

1983-12-01
HISTORICAL
J267_198312
This SAE Recommended Practice provides uniform laboratory procedures for fatigue testing certain production disc wheels, wheels for demountable rims, and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose passenger vehicles. Standardized fatigue tests are yet to be developed for wheels and rims not covered in this recommended practice.
Standard

WHEEL MOUNTING ELEMENTS FOR INDUSTRIAL AND AGRICULTURAL DISC WHEELS

1993-04-01
HISTORICAL
J714_199304
This SAE Recommended Practice includes wheel mounting elements subject to standardization in a series of industrial and agricultural disc wheels. The disc may be reversible or nonreversible and concave or convex. (See Figure 1 and Table 1.)
Technical Paper

WHAT DO FLEET OPERATORS WANT in POST-WAR TRUCKS?

1944-01-01
440159
NEARLY 300 fleet operators were questioned by Mr. Laurie to gather data for this paper on what features the users of trucks would like to have the manufacturers incorporate in post-war trucks. The cooling system is one important item that came in for its share of criticism. For example, maintaining the proper coolant level is most important, and yet many of today's systems require filling into the filler neck before the liquid level can be seen. Petcocks or sight gages properly installed could solve this problem, according to Mr. Laurie. Accessibility for maintenance should also be improved in the post-war truck. Some of today's trucks have batteries that are not located for ease of servicing and spark plugs that it is almost impossible to remove and replace. Improvements should also be possible in cold starting of the engine, based on the experience of the Army in cold climates.
X